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MR Image Reconstruction Using
Deep Density Priors

Kerem C. Tezcan , Christian F. Baumgartner , Roger Luechinger,
Klaas P. Pruessmann , and Ender Konukoglu

Abstract— Algorithms for magnetic resonance (MR)
image reconstruction from undersampled measurements
exploit prior information to compensate for missing k-space
data. Deep learning (DL) provides a powerful framework for
extracting such information from existing image datasets,
through learning, and then using it for reconstruction.
Leveraging this, recent methods employed DL to learn
mappings from undersampled to fully sampled images
using paired datasets, including undersampled and corre-
sponding fully sampled images, integrating prior knowledge
implicitly. In this letter, we propose an alternative approach
that learns the probability distribution of fully sampled
MR images using unsupervised DL, specifically variational
autoencoders (VAE), and use this as an explicit prior term in
reconstruction, completely decoupling the encoding oper-
ation from the prior. The resulting reconstruction algorithm
enjoys a powerful image prior to compensate for missing
k-space data without requiring paired datasets for training
nor being prone to associated sensitivities, such as devi-
ations in undersampling patterns used in training and test
time or coil settings. We evaluated the proposed method
with T1 weighted images from a publicly available dataset,
multi-coil complex images acquired from healthy volun-
teers (N = 8), and images with white matter lesions. The
proposed algorithm, using the VAE prior, produced visu-
ally high quality reconstructions and achieved low RMSE
values, outperforming most of the alternative methods on
the same dataset. On multi-coil complex data, the algo-
rithm yielded accurate magnitude and phase reconstruction
results. In the experiments on images with white matter
lesions, the method faithfully reconstructed the lesions.

Index Terms— Reconstruction, MRI, prior probability,
machine learning, deep learning, unsupervised learning,
density estimation.
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I. INTRODUCTION

ACQUISITION time in magnetic resonance (MR) imaging
is directly related to the number of samples acquired in

k-space. For high quality images, a large number of samples,
and therefore long acquisition times are necessary. Reducing
acquisition time in a reliable manner is an important question
in MR imaging and many methods exploiting different prop-
erties of the k-space [1] and hardware design [2] have found
wide use in clinical practice.

The question also received considerable attention from the
image and signal processing research communities, main focus
being reconstruction methods from randomly or regularly
undersampled k-space acquisitions. The random undersam-
pling approach was primarily motivated by the compressed
sensing framework [3]–[7], where the incoherence between
k-space sampling and some sparsifying transform was
exploited. Some works used hand-crafted sparsifying trans-
formations, such as gradient in total variation [8] (TV) and
wavelet decomposition [9], [10], while others used dictionary
learning to determine the transformation from data [11], [12].
An alternative approach in [13] used block matching and 3D
filtering, based on the BM3D denoising method [14], to tackle
reconstruction as a denoising problem and exploit similarity of
image patches to determine a sparsifying transform (BM3D-
MRI). On the other hand, regular undersampling schemes and
corresponding reconstruction algorithms were also extensively
investigated [15]–[18]. The common aspect in all of these
approaches, notably except BM3D-MRI, is that they invert
underdetermined and ill-posed systems of equations by using
good regularizers, which can be viewed as introducing explicit
prior information on the expected structure that helps eliminate
artifacts.

Recently, researchers started to employ deep neural net-
works (DNN) [19] for MR reconstruction [20]. Two main
approaches have been explored. The first is to learn a mapping
from undersampled images to the fully sampled versions.
For a given undersampling pattern, [21]–[23] proposed to
learn a feed-forward network and during test time fed the
undersampled image to the network. Similarly, Han et al. [24]
proposed to train a network to remove spiking artifacts in
computed tomography images and modified the mapping
for MR using domain adaptation. The feed-forward network
strategy, however, could not guarantee data consistency at
test time. To address this, Schlemper et al. [25] added
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an explicit data-consistency. Here, a mapping block, based
on Convolutional Neural Networks (CNN), is followed by
a data consistency block and the dual block structure is
cascaded. This strategy guaranteed consistency with measured
data during test time while the CNNs perform de-aliasing.
Alternatively, Wang et al. [26] proposed a model where a feed-
forward mapping is learned and during test time its output is
used as a regularization term alongside the data consistency
and other regularizers. The aim was to make sure the final
reconstruction did not deviate too much from the mapping
output.

The second DL approach leverages networks to improve
existing iterative reconstruction algorithms in terms of recon-
struction quality. Yang et al. [27] showed that the iterations
of the alternating direction method of multipliers (ADMM)
algorithm can be unrolled as a multi-layer CNN. Instead
of being fixed as in the original method, kernels and non-
linear functions are parameterized and learned by the network,
which improved reconstruction accuracy. A similar method
was presented in [28] applying the technology developed
in [29], which used the same principle as [27] for improving
diffusion filtering. The same strategy of expressing an existing
iterative method as a convolutional network was also used
in [30] and [31] and in [32] using recurrent neural networks.
Algorithms taking either of the DL approaches also integrate
prior information on the structure of fully sampled images to
account for missing k-space measurements but in an implicit
manner, embedded in the trained weights of the feed-forward
networks.

In this work, we employ a neural network as an explicit
prior similar in essence to the non-DL based reconstruc-
tion methods proposed in the signal processing communities,
the difference being the power of the prior model. Unsu-
pervised learning with DNNs has been very successful in
approximating probability distributions of high dimensional
data, including images, from a set of samples. One such
approach, of particular interest to the method proposed here, is
the variational auto encoder (VAE) algorithm [33], [34]. Using
VAEs, it is possible to approximate the distribution of MR
image patches and likelihood of a previously unseen image.
Furthermore, the approximate likelihood function is a network
and therefore differentiable. These two aspects allow using a
VAE as a prior model that can approximate distributions of
large image patches, e.g. patches of 28×28 pixels, for iterative
reconstruction.

We propose a novel probabilistic reconstruction method that
uses priors learned via VAEs, which we term as Deep Density
Prior (DDP) based reconstruction. We formulate a Bayesian
model of the imaging process, including the prior and a data
consistency term that embeds the encoding operation, and
express DDP as the Maximum-A-Posteriori (MAP) estimation.
Compared to non-DL based methods, the main difference of
DDP is the powerful prior that can capture the distribution of
large image patches. Compared to DL approaches, the funda-
mental differences of DDP are: (i) the explicit prior, which is
trained to capture the structure of the fully sampled images
as opposed to the implicit prior in feed-forward networks
that is learned to reduce artifacts seen during training; and

(ii) the decoupling of the prior from the data consistency
term. The latter difference leads to two theoretical advan-
tages: (i) while previously proposed DL-based approaches
required paired datasets for training, including undersampled
and corresponding fully sampled images, DPP does not; and
(ii) decoupling prior and data consistency terms eliminates
possible sensitivities in accuracy to deviations in acquisition
specifications between undersampled images used for training
and encountered during test time, such as sampling parameters,
coil settings and k-space trajectories, which for instance has
been demonstrated to be the case in [21].

In the rest of the article, we first present the method and then
show reconstruction results and comparisons with conventional
approaches as well as recent DNN based methods.

II. METHODS

In the first two parts of this section, we provide a brief
background on Bayesian formulation of the MR reconstruc-
tion problem and the VAE algorithm. We present our main
technical contribution, learning a prior for MR patches and
integrating it in the reconstruction problem, starting from
Section II-C.

A. Bayesian Formulation of the
MR Reconstruction Problem

An MR image is denoted as m ∈ C
N , where N is the

number of pixels.1 An imaging operation is given by an
undersampling encoding operation E = U FS, where S :
CN → CN×γ is a sensitivity encoding operator. γ is the
number of coils, F : CN×γ → CN×γ is the Fourier operator
and U : CN×γ → CM×γ is an undersampling operator, with
M < N . Let us also define x ∈ CP as an image patch of P
pixels extracted from m.

Assuming complex-valued, zero mean, normal distributed
and uncorrelated additive noise, denoted as η, the acquired
data y ∈ CM×γ can be modelled as y = Em+ η. Under this
noise model the data likelihood becomes

p(y|m)=N (y|Em, ση)= 1

(2πσ 2
η )M/2 e

− 1
2σ2

η
(Em−y)H (Em−y)

,

(1)

where H denotes the Hermitian transpose and ση is the
standard deviation of the noise. In reality, the noise might have
some correlation especially in multi-coil acquisitions, which
can be corrected by prewhitening. Here, in order to keep things
simple, we neglect the noise correlation. In reconstruction,
the quantity of interest is the posterior distribution p(m|y),
i.e. the probability of the image being m given the k-space
measurements. A common approach to model the reconstruc-
tion problem is to use the MAP estimation

arg max
m

p(m|y) = arg max
m

�
p(y|m)p(m)

�
, (2)

where we used the Bayes’ theorem and dropped the term p(y)
since it does not depend on m. p(m) is called the prior term

1In this work we focus on 2D imaging, however, the same techniques can
be applied to 3D imaging and this extension will be a part of future work.
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and represents the information one has about the fully sampled
image before the data acquisition. Taking the log of both sides
yields

arg max
m

log p(m|y)= arg max
m

�
log p(y|m)+ log p(m)

�

= arg max
m

�
− 1

2ση
�Em−y�22+log p(m)

�
.

(3)

Taking the maximum (or equivalently taking the minimum
of the negative of the expression), defining the constant
λ � 2ση and multiplying both terms with it recovers the
conventional formulation of a reconstruction problem with a
data consistency and a regularization term that is weighted by
the trade-off parameter λ

m̂ = arg min
m

�
�Em− y�22 − λ log p(m)

�
. (4)

In this work, we propose to estimate the prior term
from examples of fully sampled images and approximate
− log p(|x|), i.e. the negative log prior of magnitude of image
patches, with a neural network model. We train a VAE on
patches extracted from fully sampled MR images to capture
the distribution and use this prior for reconstruction. This
allows us to utilize the prior independent of the sampling
operation in contrast to the feed-forward mapping approach.

B. Learning the Data Distribution With VAEs

VAE is an unsupervised learning algorithm proposed to
approximate high-dimensional data distributions [33], [34]. We
introduce VAEs very briefly2 and refer the reader to [33] for
further details. VAE is a generic algorithm that can be applied
to any signal but we focus on the magnitude image patches in
our description.

The main goal of the VAE algorithm is to approximate the
data distribution using a latent variable model and optimize
its parameters for a given set of examples using variational
approximation. The model is given as

p(|x|) =
�

Z
p(|x|, z)dz =

�

Z
p(|x||z)p(z)dz, (5)

where z ∈ RL denotes the latent variable, p(z) the prior
over the z’s and L << P . A known distribution is assumed
for p(z), e.g. unit Gaussian, and a parameterized p(|x||z) is
optimized to maximize log p(|x|) of observed samples. This
modeling strategy is also taken in other probabilistic latent
variable models, such as probabilistic principal component
analysis [35]. The VAE model parameterizes p(|x||z) as a
neural network whose set of parameters we denote with ϕ.
To optimize log p(|x|) for the given samples, the integral over
z needs to be evaluated and this is not feasible even for
moderate L. Variational approximation uses an approximate
distribution for the posterior q(z||x|) ≈ p(z||x|) to address
this problem. Using q(z||x|), log p(|x|) can be decomposed

2Brief explanation is due to space restrictions

into two terms [35]

log p(|x|)=Eq(z||x|)
�

log
p(|x|, z)
q(z||x|)

�
+DKL [q(z||x|)||p(z||x|)].

(6)

The first term is referred to as the evidence lower bound
(ELBO) and the second term is the Kullback-Leibler diver-
gence (KLD) between the approximate and true posteriors. The
KLD term is intractable because the true posterior p(z||x|) is
intractable. It is, however, always larger than or equal to zero,
which makes ELBO a lower bound for log p(|x|). The strategy
of VAE is to maximize the ELBO as a proxy to log p(|x|).

Similar to p(|x||z), the VAE algorithm models q(z||x|) as a
separate neural network with parameters θ and during training
optimizes both θ and ϕ to maximize the ELBO of the training
samples. Rewriting the ELBO with p(|x||z), p(z) and q(z||x|),
the optimization for training can be written as

max
θ,ϕ

N	

n=1

ELBO(|xn|) = max
θ,ϕ



N	

n=1

Eqθ (z||xn |)
�
log pϕ(|xn||z)�

−DKL
�
qθ (z||xn|)||p(z)

�
�

, (7)

where xn is the nth training sample and we added the network
parameters as subscript at the corresponding terms to indicate
the dependence. Notice that the KLD term in Equation 7 is
distinct from the one in Equation 6, it includes p(z) instead
of p(z||x|), which makes it tractable.

The networks qθ (z||x|) and pϕ(|x||z) are typically called the
encoder and the decoder, respectively. The former takes a data
sample |x| and encodes it into a posterior distribution in the
latent space with network parameters θ . If the posterior distri-
bution qθ (z||x|) is modelled as a Gaussian, then the encoder
outputs a mean and a covariance matrix for z depending on |x|.
The decoder network on the other hand, takes a latent vector
z and maps it to a conditional distribution of the data given
z. During training, z vectors are sampled from qθ (z||x|) to
evaluate the expectations in 7. In this work, we use the original
VAE design [33] except for the data likelihood, for which we
use a multi-modal Gaussian pϕ(|x||z) = N(|x||μϕ(z),�ϕ(z))
with a diagonal covariance matrix, similar to [36]. We note
that the Gaussian distribution here is different from the data
likelihood given in Equation 1. The Gaussian in Equation 1
models the complex valued observation noise whereas the
one here models conditional distribution of |x| given z in
the essence of compound probability distributions. We provide
further network design details in the supplementary materials.

C. Deep Density Prior (DDP) Reconstruction Model

Once the VAE model is trained we can integrate the prior
within a Bayesian formulation of the reconstruction problem as
given in Equation 3. We make two key observations to achieve
this. First, given by the theory, the ELBO(|x|) can be used as
a proxy to the true distribution log p(|x|). So, an approximate
log likelihood of a magnitude image patch |x| can be obtained
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by evaluating ELBO(|x|)

ELBO(|x|)=Eqθ∗ (z||x|)
�

log pϕ∗(|x||z)+log
p(z)

qθ∗(z||x|)
�
, (8)

where θ∗ and φ∗ are the optimal VAE parameters learned
during training. The approximate log-likelihood allows us to
formulate the proposed reconstruction model as the following
MAP estimation problem

arg min
m

⎡

⎣�Em− y�22 −
	

xr∈
(m)

ELBO (|xr |)
⎤

⎦, (9)

where 
(m) denotes a set of (overlapping) patches covering
the image m and |xr | is the magnitude of the r th image
patch. Note that this approach assumes independence between
different patches, ignoring statistical dependencies between
them. It would be possible to extend the model to achieve
this, which is left for future work.

Since an exact computation of the ELBO term requires
evaluating the expectation with respect to q(z||x|), which is
computationally not feasible, we use a Monte Carlo sampling
approach to calculate the ELBO as follows

ELBO(|x|) ≈ 1

J

J	

j=1

log p(|x||z j )+ log
p(z j )

q(z j ||x|) ,

z j ∼ q(z||x|). (10)

Here J represents the number of Monte-Carlo samples.
Plugging the ELBO approximation into Equation 9,

we obtain the formulation of the proposed DDP reconstruction
problem

arg min
m
�Em− y�22 −

	

xr∈
(m)

�
1

J

J	

j=1

log p(|xr ||z j )

+ log
p(z j )

q(z j ||xr |)
�
, (11)

where z j ∼ q(z||xr |), the first term is the usual data term and
the second term within the summation is the regularization
term that arises from the learned prior.

Our second key observation is that the approximation in
Equation 10 is differentiable since each term is defined through
networks that are themselves differentiable. This is the critical
aspect that allows integrating the trained VAE as a prior into
an iterative reconstruction algorithm. We can compute the total
derivative of the prior term with respect to each image patch
as follows

R(|x|, z j ) � log p(|x||z j )+ log
p(z j )

q(z j ||x|)
d

dx

⎡

⎣ 1

J

J	

j=1

R(|x|, z j )

⎤

⎦= 1

J

J	

j=1

d

dx
R(|x|, z j )

= x
|x|

⎡

⎣1

J

J	

j=1

∂

∂|x|R(|x|, z j )+ ∂

∂z j
R(|x|, z j )

dz j

d|x|

⎤

⎦,

(12)

where we defined R(|x|, z j ) for notational simplicity. The sec-
ond term in the last line is due to the dependency of the
samples z j on x and x/|x| is due to taking the derivative of
the magnitude with respect to the image patch.

D. Optimization Using Projection Onto Convex Sets

We solve the DDP optimization problem given in Equa-
tion 11 using the projection onto convex sets (POCS) algo-
rithm [37], specifically using the formulation in [38]. POCS is
an iterative minimization process, where the solution variable
is projected sequentially onto different convex sets, each
defined by one of the constraints in the problem.

The projection for the data consistency term is implemented
using the method proposed in [37], which is PDCm = m −
E H (Em − y). When there are multiple coils, this projection
implements SENSE reconstruction.3 Since we do not have a
projection operator for the prior term, we approximate it by
several gradient ascent steps with a small step size α as in [38].
We use the final image at the end of the ascent steps as the
projected image patch. We define the prior projection with
the following steps: i) create a set of patches {xt

r } = 
(mt )
from the image mt at iteration t, ii) obtain the derivatives for
each of these patches using Equation 12, which have the same
size as the patches themselves, iii) combine the derivatives
of the patches to form a derivative image by averaging the
values where the patches overlap, iv) update the image using
the derivative image, v) repeat this K times. Notice that the
set defined by the prior projection is not necessarily convex
in |x|, however we have not encountered any problems in
convergence during our experiments. To reduce edge effects
resulting from patchwise projections, we use four sets of
overlapping patches.

With the data consistency and prior projections defined as
above, one step of reconstruction within the POCS framework
becomes

mt+1 = PDCPprior mt . (13)

The prior term in the DDP method does not explicitly
provide information on the phase, therefore, reconstruction
of the phase is driven by the data consistency projection
in the update equation above. For acquisition with multiple
coils, the reconstruction method recovers the phase without
any modification. For single coil acquisitions, to account
for the less amount of information we use an additional
projection Pphase in the update equation. A reconstruction
iteration is then given as mt+1 = PDCPphasePprior mt . We
use the ||C exp(i � m)|| term [39] as the regularization with
C as the finite difference operator, to prefer smooth phase
images. We implement Pphase as taking 10 steps with a
step size of 0.1 in the negative gradient direction of the
regularization term. It is however possible to change this to
other constraints on the phase depending on the application,
such as a zero-divergence constraint for phase contrast flow
imaging reconstruction [40]. It is also possible to extend the

3For optimal signal-to-noise ratio, one needs to account for the noise
covariance as well, which we ignore in this work for simplicity.
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Algorithm 1 Deep Density Prior (DDP) Reconstruction Using
POCS. See Text for a More Detailed Explanation
1: y: undersampled k-space data
2: E : undersampling encoding operator
3: VAE: the trained VAE
4: procedure DDPRECON(y, E , VAE)
5: m0 ← E H y 
 initialize with the zero-filled image
6: for t = 0 : T − 1 do 
 main loop: POCS iterations
7: mt,0 ← mt

8: for k = 0 : K − 1 do 
 inner loop: iterations for the
prior projection Pprior

9: {xt,k
r } ← image2patches(mt,k) 
 creates a set of
patches covering the image

10: for r = 1 : no of patches do 
 loop over all the
patches in {xt

r }
11: gr ← d

dx

�
1
J

�J
j=1 R(|x|, z j )

�

x=xt,k
r



calculate the derivative acc. to Eq. 12

12: end for
13: g← patches2image({gr }) 
 Pprior mt

14: mt,k+1 ← mt,k + α · g
15: mt,k+1 ← Pphasemt,k+1 
 (optional)
16: end for
17: mt+1← mt,K − E H (Emt,K − y) 
 PDCmt

18: end for
19: return mT 
 Resulting reconstruction
20: end procedure

VAE model and train a prior for complex image patches with
an appropriate training set.

We apply T POCS steps to complete the reconstruction.
Algorithm 1 provides a summary of the reconstruction proce-
dure.

E. Experimental Setup

1) MR Image Data: We used structural images from three
different data sources to demonstrate the proposed algorithm.

First, we used images from the Human Connectome Project
(HCP) data set [41] (see https://www.humanconnectome.org/
study/hcp-young-adult/document/500-subjects-data-release).
The high quality and large number of images from the HCP
dataset are ideal for learning priors with the VAE model.
We took 2D slices from the T1 weighted 3D MPRAGE
images from 158 subjects (790 images in total) to train the
prior VAE model. We normalized the training images by
mapping their 99th intensity percentile to 1 per image slice.
The VAE model was trained for 200k iterations with a batch
size of 50.

Second, to verify that the proposed reconstruction method
can be used on a domain that is different from the one the
prior is trained on, we experimented with two slices from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data
set (for up-to-date information, see www.adni-info.org). The
images were selected from subjects with Alzheimer’s disease
and who have visible white matter lesions. Images with lesions
allowed us to also test whether the proposed method will be
able to faithfully reconstruct such lesions. We extracted the

central slices that showed the largest lesions from these images
and further cropped the FOV to 168×224 to remove the empty
regions in the images to accelerate computations.

Lastly, we acquired images of 8 healthy volunteers after
written informed consent and according to the applicable
ethics approval, using a similar protocol to the HCP and ADNI
datasets with a 3T Philips Ingenia scanner. The FOV was
planned according to the volunteer and a head coil array with
16 elements for receiving was used. We acquired fully sampled
complex k-space data for retrospective undersampling study,
measuring the coil sensitivities using the standard Philips
SENSE reference scan (for only 6 volunteers, due to technical
issues) and also estimating them using ESPIRiT [42] (Code:
http://people.eecs.berkeley.edu/∼mlustig/Software.html) with
default parameters to obtain the autocalibrated coil maps.

2) Setup and Evaluation: We used images from 17 HCP
subjects (separate from training subjects), the ADNI images
and the acquired data from 8 subjects in our evaluation.
We retrospectively undersampled the test images in k-space,
reconstructed them back and compared the results with the
original images. For the acquired data, the fully sampled
k-space data was present while for HCP and ADNI images,
we used Fourier transform to compute the fully sampled
k-space data. We experimented with varying undersampling
(US) ratios, which we denote with R when presenting results.

We used Cartesian US in one dimension while fully sam-
pling in the other dimension, corresponding to phase-encoding
and readout directions, respectively. We present an example
of US patterns in Figure 1. We generated the patterns by
randomly sampling a 1D Gaussian distribution along the
phase-encoding dimension. We randomly drew many sampling
patterns from the Gaussian distribution and selected the ones
with the best peak-to-side ratio. In addition, we added the
central 15 profiles to these selected patterns to fully sample
the low-frequency components. We used 2, 3, 4 and 5 for net
US ratios (including the fully sampled center). In addition,
we used 4-fold radial US with non-uniform fast Fourier
transform (NUFFT) [43]. We used the implementation given
in [44] with a conjugate gradient solver. For reconstruction in
this case, we only changed the fast Fourier transform (FFT)
to NUFFT in the data consistency term and did not modify
the prior projection.

At reconstruction time the undersampled images need to
be in the intensity range for which the DDP prior is trained.
To meet this requirement, we normalized the undersampled
images to their 99th percentile before reconstruction with
DDP. Notice that this may not be the same value as the 99th

percentile of the fully sampled images, which would not be
available in a real setting for test images.

While assessing our proposed DDP method, we generated
a new random US pattern for each test image to make sure
our empirical analyses assess the effects of the variability of
the US patterns. We reconstructed the test images from HCP
and ADNI using 30 POCS iterations (T = 30) for R = 2
and 3 and 60 for R = 4 and 5, 10 iterations for the prior
projection (K = 10) and the step size was set to α = 1e-4,
where convergence was observed. We initialize the POCS
algorithm using the zero-filled image. When reconstructing
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images from volunteers, we run 10 iterations of only data
consistency projections initially and then turn on the prior
projection. We also use lower number of iterations (T = 5
for both R = 2 and R = 3) to prevent divergence due
to discrepancy between the true and used coil sensitivities.
We implemented the coil combination as given in [45] at each
data projection step.

We compared the reconstruction with the fully sam-
pled “ground truth” images using Root-Mean-Squared-Error
(RMSE), Contrast-to-Noise-Ratio (CNR) and Contrast differ-
ence (CN) computed at the gray and white matter bound-
ary in the brain. We use the FreeSurfer [46] to obtain the
segmentations required for CNR and CN. Details are given
in the supplementary materials. We present these results in
Section III.

Additionally, we performed three experiments to test sen-
sitivity of ADMM-Net to deviations in acquisition specifi-
cations between undersampled images used in training and
test. Experiments in [21] provide evidence to this end for
basic feed-forward networks. Authors showed that when
k-space trajectories between training and test images differ,
the feed-forward network’s performance decreased. ADMM-
Net is notably different than a basic feed-forward network
as it integrates explicit data consistency in the feed-forward
architecture. In these experiments we test the null hypothesis
that using a different US pattern in reconstruction than in
training does not result in a decrease in the performance in
the RMSE sense. When measuring RMSE, we used a mask to
only measure the reconstruction errors in the brain tissue and
skull ignoring artifacts in the background. In each experiment,
we trained two networks using different US patterns and
applied them on the same test images. In Experiment I,
we used R = 2 and R = 4 for training and tested on R = 2.
In Experiment II, we used the same networks as in I but
tested on R = 4. Lastly, we trained networks with R = 3
Cartesian and R = 3 pseudo-radial patterns and tested on
R = 3 Cartesian. We used the 17 test images for the evaluation
and performed paired Wilcoxon signed-rank tests to assess the
null hypothesis.

We further experimented with different latent space dimen-
sions, patch sizes and signal-to-noise ratio in the measurements
to better characterize the proposed algorithm. Due to space
restrictions, we present these analyses in the supplementary
materials.

3) Compared Methods: We implemented several methods
to compare against our proposed approach. These are zero-
filling reconstruction (ZF), total variation (TV) [3], dictionary
learning (DLMRI) [11], ADMM-Net [27], BM3D-MRI [13],
SIDWT [9], FDLCP [12] and PBDW [10]. Available imple-
mentations for the last three methods only ran on cropped
FOV images (square image slices). To compare we used a
corresponding DDP reconstruction on cropped FOV. We give
the implementation details in the supplementary materials.

III. RESULTS

We start by showing visual reconstruction results. Figure 1
shows results for one of the test images from the HCP data

Fig. 1. Reconstruction results for R = 3. (a) shows the fully sampled
image (FS) and the undersampling pattern (USP). (b-g) show reconstruc-
tion results and the error maps (intensities clipped to (−0.3,0.3)) for the
full FOV. (h-k) show the results for the cropped FOV. (l-v) show a zoomed
region from the images above. (b-g) are produced with the undersampling
pattern that was used to train the ADMM-Net for comparability. In (h-k),
we also used the same pattern for undersampling for all methods for
comparability.

for R = 3. The sampling pattern is also shown in the figure.
Visual quality of reconstructions for different methods varied.
TV and PBDW reconstructions had problems in restoring
the structure and texture. Respective reconstructed images in
Figure 1 appear cartoon-like and error images show higher
error in regions where gray (GM) and white matter (WM)
structures are intertwined. SIDWT did not complete dealiasing
and ADMM-Net did not reconstruct the small GM island in
the zoomed image. DDP, DLMRI and FDLCP perform well.
We show four more randomly selected images from the test
set in supplementary Figures S6 and S7 for R = 2, 3 as well
as reconstruction results for R = 2, 4, 5 in supplementary
Figures S8, S9 and S10.

We present the quantitative results for reconstruction accu-
racy in Table I. We show results for full FOV and cropped
images separately as the numbers are not comparable. In
terms of RMSE our DDP method performed best for the full
FOV reconstructions (except for R = 2, where BM3D-MRI
performed better) and second best against FDLCP for the
cropped FOV setting. In terms of CNR, the proposed method
performed equally or better than all the other methods for both
full and cropped FOVs.
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TABLE I
TABLE SUMMARIZING RESULTS FOR DIFFERENT RECONSTRUCTION QUALITY METRICS. NUMBERS INDICATE THE MEAN (AND STANDARD

DEVIATION) OF THE ERROR METRIC FOR N = 17 TEST IMAGES. TOP GROUP ARE THE RESULTS FOR EXPERIMENTS WITH

FULL FOV IMAGES AND BOTTOM GROUP ARE FOR CROPPED FOV IMAGES

Fig. 2. Reconstruction results for measured data. Rows show the
magnitude and phase of (a) the fully sampled image, (b) the zero-filling
image, (c) the DDP reconstruction (using ESPIRiT coil maps) and (d)
the error (clipped to (−0.3,0.3)). Upper two rows: A Cartesian US pattern
(R = 2) was used to retrospectively undersample the kspace data. Lower
two rows: A radial US pattern (R = 4) was used. In both cases the prior
projection is the same, only the data consistency projection differs (using
FFT and NUFFT, respectively). (a) FS (b) ZF (c) DDP (d) Error.

In Figure 2 we show reconstruction results from retrospec-
tively undersampled k-space data acquired within this study.
First example is reconstruction of 2-fold Cartesian under-
sampling and the second is of 4-fold radial undersampling
using NUFFT in the encoding operation. Our DDP method
can reconstruct the original magnitude and phase fairly well,
though the magnitude image was smoother than the fully sam-
pled magnitude image in both cases. Quantitatively, the mean
(std) RMSE for the Cartesian case for all subjects was 6.97%

Fig. 3. DDP reconstruction results for two images with white matter
lesions due to Alzheimer’s disease from the ADNI data set for R = 2.
Images show (a) the original (FS), (b) zero-filling (ZF), (c) reconstructed
(DDP) and (d) the error maps. Lesions are clearly visible in the recon-
structed images as well. Error map values are clipped to (−0.3, 0.3).
Arrows denote lesions. (a) FS (b) ZF (c) DDP (d) Error.

(0.37) using ESPIRiT coil maps (N = 8) and 6.92% (0.58)
using measured coil maps (N = 6) for R = 2. Mean (std)
value for R = 3 was 10.35% (1.53) with ESPIRiT coil maps
and 9.93% (1.82) with measured sensitivities. These values
were higher than those for HCP data. In order to see the
portion of the increase in RMSE due to the inaccuracies in the
encoding operator and phase, we also reconstructed the images
by setting the phase of the fully sampled image to zero before
undersampling and expanding the image by known coil maps.
In this case the mean RMSE reduced to 5.76% (0.56) (R = 2,
N = 8). Furthermore, we also reconstructed the images using
only data consistency projections, corresponding to SENSE
reconstruction, to see the added value of the DDP projections.
In this case the mean RMSE was 7.95% and 11.42% for
(R = 2, 3, respectively, N = 8, ESPIRiT maps). We present
more information on this point in the supplementary
materials.

In Figure 3, we show DDP reconstructions for the ADNI
images for R = 2. We used the VAE model that was trained
on the HCP dataset, which had only healthy subjects, to recon-
struct the images here. The reconstructed images recover GM
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TABLE II
RECONSTRUCTION RESULTS FOR ADMM-NET, WHEN USING

DIFFERENT US PATTERNS AT TRAINING AND TEST TIMES. STATISTICS

WERE DERIVED FROM N = 17. Rtrain AND Rtest DENOTE THE US
FACTOR (PATTERN) USED IN TRAINING AND TESTING. IF NOT

STATED, A CARTESIAN PATTERN (CART) WAS USED AND “RAD”
DENOTES PSEUDO-RADIAL PATTERN. RMSE DIFF. REFERS

TO THE Nth PERCENTILE OR MEDIAN VALUE OF THE

DISTRIBUTION OF PAIRWISE RMSE DIFFERENCES.
p-VALUES ARE CALCULATED WITH PAIRED WILCOXON

SIGNED-RANK TEST. LAST ROW PRESENTS THE

DDP RMSE VALUES FOR COMPARISON PURPOSES.
THESE RMSE VALUES WERE CALCULATED

WITH DISREGARDING THE ARTIFACTS IN THE

BACKGROUND USING A BRAIN MASK

and WM structures and edges faithfully. The WM lesions were
also well reconstructed. The error maps do not indicate a
specific increase in the lesion regions.

In addition to these results, we show the convergence of
the POCS algorithm in Figure S3, and results for patch size,
latent dimension and noise analyses in Figures S4 and S5 of
the supplementary materials.

Lastly, we show results for the experiments assessing sen-
sitivity to deviations in acquisition specifications between
training and test images of ADMM-Net in Table II. All the dif-
ferences were statistically significant at the 0.05 level accord-
ing to the paired test, performance of the method decreased
significantly when the training and test patterns/ratios differed.
Performance differences in the Experiment I were particu-
larly high.

IV. DISCUSSION

The reconstruction examples in Figure 1 and the quantitative
results in Table I show that the proposed deep density prior
reconstruction method produced highly accurate reconstruc-
tions both in terms of RMSE and CNR compared to the
other methods. While BM3D-MRI and FDLCP could achieve
slightly lower RMSE’s, they both decreased CNR further
than DDP, indicating that both methods sacrificed contrast
to reduce RMSE, generating blurrier images. Leveraging the
powerful prior over image patches, DDP was able to restore
structures in the image faithfully while removing aliasing
artifacts. Comparing methods that use explicit priors, DDP’s
performance demonstrate the huge potential in DL-based pri-
ors for MRI reconstruction. Compared to ADMM-Net, DDP’s
higher accuracy shows that it is a highly attractive alternative
to feed-forward network approaches.

Experiments with images from the ADNI dataset and
acquired k-space data showed further properties of DDP
and also prompted some key questions for further research.

Results in Figure 2 show that the DDP method yielded high
quality reconstructions for both the magnitude and phase
images, though with higher mean RMSE values than those in
the HCP test images. The fact that the RMSE decreased when
the correct coil sensitivities and phase were used, suggest that
some part of the error is due to the discrepancies between real
and measured coil sensitivities. Hence, increasing accuracy
of the coil maps would potentially decrease the error rate.
Similarly, the method currently uses theoretical or no prior
for the phase but it would benefit from better priors for this
component as well.

The ADNI reconstruction results are encouraging in two
respects. First, they show that the learned model does not blur
out the lesions during the prior projection, which could have
been expected since the training images did not contain any
examples of lesions. We believe the lesions could be recon-
structed because they are structurally not very different from
healthy brain structures. In addition, the data consistency term
makes sure the sampled information regarding the lesions is
kept in the final image. However, the proposed method, similar
to other reconstruction methods, requires further investigation
as to where its limits lie, such as with bigger, brighter lesions.
We believe for an optimal treatment of lesions, the training
data set should include such images to provide the prior the
capability to represent them.

Second, the proposed method performed reasonably well
despite the domain difference between the training and test
sets. Although the two data sets were acquired at the same
field strength, they still differed in some acquisition protocol
and imaging parameters. Their FOV and voxel resolution are
different, and HCP was acquired with fat suppression while
ADNI was not, which affects the image contrast. Our method
is invariant to changes in FOV but not in scale. The lack of
fat suppression also makes the dealiasing more challenging
in the ADNI images since artifacts become more prominent.
This results in very faint artifacts in the ventricles in the
reconstructed images. Despite these differences, the quality of
the reconstruction results indicate that the learned prior model
could generalize to slightly different scales and similar but not
identical imaging protocols. However, these experiments raised
two key questions and exciting research directions regarding
the sensitivity of the proposed method.

Even though the proposed method is not sensitive to varia-
tions in undersampling patterns or coil settings, when contrast
or resolution of the acquired images differ substantially from
training images used to learn the prior, we believe reconstruc-
tion quality will decrease. There are two interesting directions
to remedy this issue. First is to use a different prior for
different contrast and resolutions. Second is to further improve
the reconstruction quality using appropriate domain adaptation
methods. Integrating invariance to domain differences in the
prior and even building a joint prior for multiple contrasts
are interesting research directions. Similar sensitivity issues
can also be expected when the underlying anatomy differs
between the acquired image and the prior. In this scenario, the
safest approach would be to train a prior for each anatomy
but building a prior that is capable of representing multiple
anatomies is also an interesting direction. We also note that
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it is possible that all learning based methods suffer from the
mentioned sensitivities [47].

An underlying assumption of our model is the unit Gaussian
prior for the latent space, for which different extensions such
as Gaussian mixtures or graphical models were investigated
in [48] and [49], which could in principle improve the rep-
resentation capacity of the prior. Similarly, different density
estimation methods are investigated, for instance using gener-
ative adversarial networks (GAN) [50], [51]. Ledig et al. [52]
proposed to use the discriminator of a GAN to superresolve
images. Shah and Hegde et al. [53] explain the drawbacks of
this approach and similar to [54] suggest projecting images
onto the span of the generator. A similar approach is given
in [55]. The advantage of using VAEs is the simplicity of the
inverse mapping. Determining the latent space representation
of a given image is much more straightforward with VAEs,
not requiring a separate optimization as GANs.

Another alternative approach to the VAE would be to use
denoising autoencoders (DAE) [56]. Even though these might
offer faster algorithms, the advantages of VAEs compared to
DAEs are i) a more principled way of approximating the
target distribution and ii) ease and rigor in approximating the
likelihood of an image patch due to the variational inference
mechanism that underlies VAEs.

One limitation of our method is the requirement of training
in contrast to methods using fixed bases for regularization.
Training of the prior relies on the availability of high quality
data. Such data is available for commonly used sequences,
such as structural T1w and T2w MRI. For other sequences,
such as functional or diffusion MRI, construction of appropri-
ate training set is of interest for future research.

Experiments with different configurations, which are pre-
sented in the supplementary materials, showed that the DDP
reconstruction is not sensitive to patch size and latent space
dimensions for a reasonable range. Furthermore, reconstruc-
tion quality is higher when patches larger than 12 × 12
are used. In addition, as expected, the performance degrades
with decreasing SNR, however, with a low rate indicating
robustness of the method to noise. This means the method
is likely to perform fairly well in the regions with higher g-
factor that have lower SNR due to parallel imaging.

In our current implementation a single evaluation of the
derivative through the network takes around 9 seconds for
360 28 × 28 patches (0.6 seconds per batch of 25 patches
in parallel). The total run time is given by this multiplied
by number of iterations and all the other operations including
mainly the phase projection, data projection and application of
the derivatives for these operations. This time can be reduced
by optimizing the code, increasing the parallelization and
changing the network to work with images directly rather
than patches. Furthermore, we demonstrate our method on 2D
slices with a single phase encoding/undersampling direction
as a proof of concept. However the method can be extended
to a 3D setting, either by doing slice-by-slice reconstruction
with a VAE trained on the whole brain or by training a VAE
with 3D patches.

Results presented in Table II demonstrate that ADMM-Net
model is also sensitive to deviations in undersampling patterns

used in training and test images, similar to the method pro-
posed in [21]. Other feed-forward networks may also show
similar sensitivities however, to the best of our knowledge,
such an analysis is rarely performed. In contrast, we emphasize
that the proposed method, due to decoupling of the prior and
the data consistency term, does not share the same sensitivity.
It learns the prior distribution on fully-sampled images and
can be used to reconstruct any sampling scheme faithful to
the measured data without the need of retraining as long as
the images are from the same domain.

V. CONCLUSION

In this paper we proposed a novel method termed DDP for
MR reconstruction from undersampled k-space acquisitions.
The method uses the VAE algorithm to learn the distribution
of MR patches from fully sampled images, removing the
sensitivity of the model to the sampling pattern. The model
then uses this learned distribution as a probabilistic prior in
a Bayesian reconstruction framework. We have shown that
the reconstruction with the DDP approach yielded promising
results for HCP and ADNI data sets as well as multi-channel k-
space measurements in terms of visual quality and quantitative
measures.
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